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When the HELP computer code is applied to conical-shaped charge warhead problems, 
the computed internal energy predicts a thermal state completely different than that in- 
dicated by experiments. The cause of this phenomenon is the numerical interchange of the 
kinetic energy to internal energy which is generated by terms of the order of the truncation 
error in the kinetic energy calculation. A correction is given and qualitative thermal agree- 
ment is achieved for the first time between a HELP calculation and experimental evidence. 
The effects of the original kinetic energy calculation on the accuracy of the internal energy 
is problem dependent and criteria for such a determination are given in terms of the trun- 

cation error terms for the internal energy. A mesh refinement study further illustrates the 
consequences of the original and modified kinetic energy calculations. The same phenom- 
enon can occur in other computer codes with a Particle-In-Cell based algorithm and the 
given correction is applicable. 

I. INTRODUCTION 

Time-dependent two-dimensional Eulerian computer codes like HELP [l] and 
HULL [2] are utilized to describe the unsteady interactions of continuous media 
(fluid and/or solids). Many of these continuum codes have a common ancestorial 
algorithm, the Particle-In-Cell method [3-51. During the evolutionary process, the 
new codes have deviated substantially from the original PIC method; for example, 
the discrete particles were replaced by a continuum, certain Lagrangian-type features 
were abandoned, and for calculations in solid mechanics, material strength and effects 
of the deviatoric stress tensor were included. These codes can produce very successful 
simulations but often the results are not totally satisfactory. Such is the case with the 
HELP code which is used by several research laboratories and corporations for 
diverse applications in compressible flow and elastic-plastic flows. In certain ballistics 
applications at the U.S. Army Ballistics Research Laboratory, the code predicts 
velocities satisfactorily but an internal energy which implies a different thermal state 
than that indicated by experimental evidence. The purpose of this paper is to show 
that the original approximations in HELP lead to specific error terms that significantly 
and consistently influence the internal energy calculation and to propose a correction 
within the context of the current algorithm. 
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The internal energy algorithm in HELP is based on the finite-difference approxima- 
tion of the total energy equation and the kinetic energy calculated from updated 
mass and momentum values. This internal energy approximation is shown to include 
terms of the order of the truncation error which arise in the kinetic energy calculation 
from the finite-difference approximations of the mass and momentum equations. 
These terms, in certain cases, cause a less accurate calculation of the internal energy 
(they increase the truncation error) and produce an interchange of energy at each 
phase which is not modeled in the governing equations. Evans and Harlow [3] 
identified an energy transfer mechanism in the convection phase of the original PIC 
method which can be seen in HELP. This mechanism is due only to spatial descretiza- 
tion and was illustrated in one dimension. The following analysis involves all the 
phases in the HELP algorithm, is two dimensional, includes the effect of time dis- 
cretization, and applies to a different code with a different energy formulation (the 
PIC algorithm transports total energy but directly calculates the internal energy in its 
other phases). Although this paper deals exclusively with the HELP algorithm, the 
concepts and results discussed are applicable to other codes. In particular, the same 
internal energy phenomenon is seen in calculations performed with the HULL code. 

In Section II, the governing equations which are modeled by the HELP algorithm 
are listed, the corresponding approximations are derived, and other salient features of 
the algorithm are discussed. Truncation error analyses of the kinetic energy and 
internal energy calculations in Section 111 reveal the specific error terms arising from 
the HELP’s finite-difference approximations of the governing equations. Corrections 
to the algorithm are then proposed. Numerical examples contrasting the original and 
modified algorithms are discussed in Section IV. Section V contains a summary. 

II. THE HELP CODE 

The unsteady motion and interaction of continuous media can be described by a 
continuity equation, equations of motion, a total energy equation, and an equation 
of state. For simplicity, we shall consider the Cartesian formulation. The appropriate 
two-dimensional equations in conservative form are: 

3P 
at= - g CPU> - 6 (Ph (1) 

a(Pu) _ 
at - & (pm) - $ (pzw) - g -t $ CL) + $ (&,A (2) 

a64 -= 
at - & (pm) - $ (pw) - z + & (LG.,) + ;, &/A (3) 

a(PE) -zz 
at 

- g (puE) - .g (pcE) - !g2 - ql 

(4) 
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where 64 Y, p, u, u, P, S,, , S,, , S,, , and E denote the time, two spatial coordinates, 
density, x and y components of velocity, pressure, the two normal and one shear stress 
components of the stress deviator tensor, and specific total energy, respectively. The 
elements of the stress deviator tensor are functions of the velocity gradient. The 
pressure is computed via an equation of state of the functional form P = P(p, I), 
where I is the specific internal energy. The specific internal energy is obtained as the 
difference of the specific total energy and the specific kinetic energy: 

I = E - 0.5(u2 + v”). (5) 

If the conservation Eqs. (l-4) are integrated over an arbitrary control area, the time 
rate of change of a quantity within the control area can be related to the integrals of 
other quantities over the boundary enclosing that area. Performing the integration and 
using Green’s theorem, we obtain 

i: 
at. j pu dA = jB U@V dx - pu dy) - jB P dy + jB (S,, dy - &, dx), (7) 

a 
at. i pcdA = j t.(pv dx - pu dy) + .r, P dx + J‘, (Sz, dy - St,, dx), (8) 

B 

a 
- j pE dA = j E(pr dx - pu dy) -t !^, (Pr ii.~ - Pu dy) 
at A B 

where B is the boundary of area A in the positive sense. Equation (7), for example, 
equates the time rate of change of the x-component of the momentum within the area 
A to the product of the specific momentum in the x direction and the net mass flow 
into the area plus the sum of certain surface forces (the pressure and the x-components 
of the deviator stress tensor) exerted over the boundary enclosing the area. Such 
interpretations are used to determine the HELP approximations to the governing 
equations. 

The HELP code is an Eulerian code capable of describing unsteady multimaterial 
interaction and of treating material strength as an elastic-plastic phenomenon. A 
consequence of the multimaterial capability is mixed cells (cells containing more than 
one material). The complex treatment of these cells is important and indispensable to 
the correct running of the code. However, an accurate and complete analysis of these 
numerical techniques is unwieldy. An analysis of the pure cell (a cell containing only 
one material) algorithm reveals the cause of the internal energy problem. Hence, the 
following discussion will address only the pure cell algorithm. Furthermore, we 
consider only interior cells. We assume that the grid spacing dx in the x-direction is 
constant as well as dy in the y-direction. The control area A is taken to be the ith, jth 
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FIG. 1. Computational cell for Cartesian formulation of HELP. 

computational cell. See Fig. 1. The left, right, top, and bottom boundaries of this cell 
are denoted by the letters 1, r, a, and b, respectively. A time step dt in this explicit 
algorithm is determined by a Courant condition. The area integrals in Eqs. (6)-(9) are 
approximated by m = pAxAy, mu, mu, and mE, respectively, where m denotes the 
mass per unit length. All the values are at the center of the computational cell. The 
time derivatives are approximated by a forward difference. The values of the cell 
centered mass, momentum, and specific total energy at the new time level are found 
from the values at the previous time level. This is accomplished in three stages by deter- 
mining the time rate of change of the mass, momentum, and total energy due to (i) the 
effects of the deviatoric stresses, (ii) the effects of the pressure, and (iii) the effects of 
the convection terms. These phases are appropriately named SPHASE, HPHASE, and 
TPHASE, respectively. During each time step, each value of the mass, momentum, 
and total energy is updated sequentially by each phase in the order listed and each 
phase uses the previously updated values as its initial values. Each phase is solved 
independently of the others and are interconnected only through the initial values. 
The boundary integrals in Eqs. (6)<9) are approximated using the current values of 
the integrands at the boundaries of the computational cell. The pressure is calculated 
before SPHASE and the stress deviator tensor is updated at the beginning of SPHASE. 
The internal energy is updated by Eq. (5) at the end of each phase. 

Specifically, we list the HELP approximations to the conservation of mass, momen- 
tum, and total energy equations. The HELP approximations to the Eqs. (6)-(9) in the 
SPHASE portion of the calculation for the ith,jth cell at the nth time step are: 

rGi = m, (10) 

6% = mu + (Snn7 - S,,l) Ay At + (Szva - Szyb) Ax At, (11) 

6% = mu + (L&,~ - Szvz) Ay At + (Svga - Syvb) Ax At, (12) 

n% = mE + [(uTSzz7 - u~S’~~~) + (v~S.,~~ - v~&.,~)] Ay At 

+ Cw%,” - ubs,,b) + (zP&~ - v~S,,~)] Ax At, (13) 

581/35/2-5 
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where the tilde denotes the SPHASE updated value and the letter superscripts r, 1, a, 
and b refer to the evaluation of the term at the corresponding boundary. A variable 
without subscripts or superscripts denotes that quantity evaluated at the center of the 
ith,jth cell at the nth time level. The boundary value of a variable is the average of its 
cell-centered values adjacent to that boundary, for example, ST,, = 0.5 [(Sz,)F+:,,j + 
(S.&&], where (S&)& = S&i - 4) fix, (j - +) dy, ndt]. See Fig. 1. The approxima- 
tions (lo)-(13) can be derived from a physical interpretation of the SPHASE portions 
of Eqs. (6)-(9). For example, consider approximation (13). The effects of the stress 
deviator tensor on the time rate of change of the total energy [z - rnE]/~It during 
the entire time step fit are governed by the work rates per unit surface area, US,, and 
v&v 3 acting on the right and left boundaries and US,, and US,, on the top and the 
bottom boundaries, times the length of these boundaries. 

The errors that are introduced by the numerical approximation (13) can be ob- 
tained by expanding the corresponding finite-difference equation in a Taylor series. 
We use the mass-density relation m = pOxdy and rewrite Eq. (13) as 

PZ-PE- uY!&T - uLs,,21 v?szyT - vlszvl 
At Ax - Ax 

UaS,,” - UbSzub vasvya - vbs,,b - 
AY - Ay = 0. (14) 

A Taylor series expansion of each dependent variable in Eq. (14) at the center of the 
ith,jth cell at the nth time level leads to 

+ O(At2) + U(Ax3) + o(Ay3). (15) 

The terms in Eq. (4) which are relevant to SPHASE are given on the left-hand side 
of Eq. (15) and the dominant error terms appear on the right-hand side. The order of 
error terms are O(At), O(Ax2), and O(Ay2). Thus, approximation (13) is first order in 
time and second order in space within the context of SPHASE (assuming the post 
SPHASE values are those at the end of the time step). A similar analysis and results 
hold for approximations (11) and (12), and Eqs. (2) and (3), respectively. 
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The HPHASE approximations are 

iii = m, (16) 

mU = mii - (P’- Pz) Ay At, (17) 

iiiii =md - (Pa - P”) Ax At, (18) 

mE = mi? - (P’iT - Pzfiz) Ay At - (Pa? - PbiYb) Ax At, (19) 

where the bar denotes the HPHASE updated value and P = P(p, Z). The truncation 
error analysis of approximation (19) can be made in exactly the same manner as for 
approximation (13). The result is 

a65 + a(m) + a(pq __ - - at ax ay 

+ Wt2) + 0(0x3) + 0(Ay3). (201 

Thus Eq. (19) is a first-order approximation in time and second order in space within 
the context of HPHASE. The other HPHASE approximations (17) and (18) are of the 
same order. 

For simplicity in the discussion of the TPHASE approximations, we assume that 
the velocity has both positive x- and y-components. The TPHASE approximations 
which model the convection between cells are: 

mn+l=m + 6mz - 6mc+ 6mb- 6ma, (21) 

(mu)n+l = mii + 6mziii-~~j - 6m% + 6mbEi,j-~ - AmYi, (22) 

(mv)“+l = mij -+- 6mzi3i-l.j - 6mYi $ 61?lbUi,j-1 - 6m”ii, (23) 

(mE)“+l = rnE $ 6m’Egl.j - 8mri? +- 6mbE,,j-l - amaE, (24) 

where 8mz, 6mb, 8mr, and &ma denote the convected mass per unit length from the left 
and bottom cells and to the right and top cells, respectively. See Fig. 1. In general, 
8md = pdLdiPAt, where pd denotes the density of the cell from which the mass is 
transported, tid is the interpolated value of the velocity component normal to the cell 
boundary and La is the length of the cell boundary through which the mass is moved. 
For example, the factors in 6mz are pz = pi-l,j, Cz = 0.5 (ii + Gi-,,i)/[l + At@ - 
i&JAx], and Lz = Ay. We note that Cd represents the transport velocity of 6md 
based on linear approximations over the time step At. The intuitive explanation of the 
TPHASE approximations for Eq. (21) is that the mass at the end of TPHASE (the 
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final value at (n + 1) time level) is the mass originally in the cell plus the mass trans- 
ported into the cell (a&, 6mb) minus the mass transported from the cell (am’, &‘I). 
For the total energy approximation (24), a similar situation exists, except that now 
each convected mass is associated with the specific total energy of its “donor” cell. 
Within the context of TPHASE (assuming the post-HPHASE values are the initial 
values at the nth time level), approximations (21)-(24) can be shown to be first 
order in time and space to the TPHASE portions of Eqs. (l)-(4), respectively. For 
example, to determine the order of approximation (24), we substitute the appropriate 
mass approximations and obtain 

CPU n+l - (pE) + (pE> iP - (pi--l,jEi-l,j) 9 
At Ax 

A Taylor series expansion of each dependent variable in Eq. (25) at the center of the 
ith, jth cell at the nth time level leads to 

- 
2cpmq + qpEu) + i’(p@ = _ At ~YPJ~ __ 

at ax S 2 [ 
--2&(pEil~)-2;(pEi$] 

2t’ 

+ O(AP) + O(Ax2) + o(Ay2). (26) 

The terms in Eq. (4) which are relevant to TPHASE are given on the left-hand side 
of Eq. (26) and the dominant error terms appear on the right-hand side. The spatial 
gradients in the coefficient of At in Eq. (26) are the results of the transport velocities’ 
U7, iil, fia, and fib dependence on At. The order of the error terms are O(At), O(Ax), and 
O(Ay). Thus, approximation (24) is first order in both time and space, which esta- 
blishes the assertion. 

We have shown that the SPHASE and HPHASE approximations of Eqs. (l)-(4) 
are first order in time and second order in space and that the TPHASE approxima- 
tions are first order in both time and space. Consequently, the order of the spatial 
approximation in TPHASE is less than that for either SPHASE or HPHASE and 
first-order error terms will be dominant within the algorithm. 

III. THE KINETIC ENERGY AND INTERNAL ENERGY CALCULATIONS 

In order to determine the cause of the unphysical internal energy values produced 
by the 1975 HELP code in conical-shaped charge calculations, we must investigate 
how the total energy approximations are combined with the kinetic energy approxima- 
tions to produce the internal energy approximations. To this end we list the partial 
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differential equations for the kinetic and internal energies. The partial differential 
equation governing kinetic energy can be derived from Eqs. (l)-(3) by the following 
identity: 

(27) 

and can be written as 

where e = 0.5(u2 + u2). An interpretation of the above manipulation is that given the 
exact solutions of Eqs. (l)-(3), the derived function e is identical to the exact solution 
of Eq. (28). We shall show that the HELP approximations do not share this property. 
The partial differential equation governing internal energy can be obtained by sub- 
tracting Eq. (28) from Eq. (4) and by using identity (5): 

(291 

In the HELP code, the specific kinetic energy e at the end of each phase is computed 
via 

e = 0.5Nmu)/m12 + [bu)/ml”) (30) 

using the updated values of the mass and momentum from that phase. By using 
approximations (lo)-( 12), (16)-( 18), and (21)-(23), Eq. (30) and the expressions for 
the mass in terms of the density, we can write the formulas used to determine the 
updated specific kinetic energy at the different phases in terms of the initial values at 
SPHASE, HPHASE, and TPHASE. The resulting expressions are never explicitly used 
to calculate the kinetic energy but are numerically equivalent to Eq. (30). The results 
are : 

=4 
s 22 r - szzl S,,“- s,,” i u 

Ax + Ay i I [ 
S,,’ - &vZ I SW/“-- Swb 

AX Av I 
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@I,- <a = -fi [pTA;p” -6 p’*;P’ 1 [ 1 
+ I$ [( PTA;pz)2 + ( paA;Pb )‘]I , (32) 

tt4 n+l - (pe) 
At 

-z- 
=- 

pii'i? - pi-l,jU e,-l,i _ PiPZ - pi,j-lfibCa j-1 
AX AY * 

_ pf-l.@ $ I AX 
&-urAt-pAt-- 

U - tid-l,j 2 

2pn+l [ AY I[( AX 1 ( 
+ 

ij - iji-1.3 2 

Ax )I 
, pyi;fFb [dy _ -.a At _ ii7 At & ’ - ‘i.i-1 2 

AY I[( ii - ‘i-j-1 ’ + 

AY 1 ( AY )I 
+ P<~l,jpi,j-~"b~L Ax 

“F dx [i 
Ay tl - ~i,j._l U - Ui-1.9 

2pn+1 Ay - Ax 1 
’ 

Ay v - v,,~-~ 
i 

G - z&j 2 1 
T Ax Ay - Ax 1 11 

A truncation error analysis of Eqs. (31)-(33) reveals significant information about 
the kinetic energy approximations. Since we have shown that the dominant error 
terms within the HELP algorithm are of first order, we will not write the higher-order 
terms. Preceeding in a similar fashion to the truncation error analyses of Section II, we 
obtain for Eq. (31) 

atf.4 
at-U t 

G, as,, 2 2s I as,, 
2X + a?. 1 - L, t ax jT!$- 1 

At cS”(pe) 2 [ 1 i am 
1 t 

2 + WE, 2 1 aLI as,, _ 
at2 p ax aY 

+ 
P 2X 2Y 11 

+ O(At2) + o(Ax2) + O(Ay”). (34) 

The terms in Eq. (28) which are relevant to SPHASE are given on the left-hand side 
of Eq. (34) and the dominant error terms appear on the right-hand side. The order of 
the error terms are O(At), O(Ax2), and O(Ay2). Thus, approximation (31) is first order 
in time and second order in space, and the order of this approximation is consistent 
with the other SPHASE approximations. The terms 

in Eq. (34) are the lowest-order terms of those enclosed by braces in Eq. (31). Thus, 
the braced terms in Eq. (31) which are included in the kinetic energy approximation 
in SPHASE are of the order of the truncation error. 
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An analogous truncation error analyses of Eqs. (32) and (33) gives, for HPHASE, 

and for TPHASE 

As in SPHASE, the HPHASE kinetic energy approximation is first order in time 
and second order in space, and includes terms (those enclosed in braces in Eq. (32)) 
which are of the order of the truncation error. Equation (36) shows that the TPHASE 
kinetic energy approximation is first order in both time and space. The terms enclosed 
in braces in Eq. (33) contribute only to the O(Ax), O(Ay), O(At), and higher-order 
terms in Eq. (36) and, consequently, are of the order of the truncation error. 

Thus, the order of approximations (31)-(33) are in accord with the other approxi- 
mations in the three phases but these approximations include terms which are of the 
order of the truncation error: terms of order At in SPHASE and HPHASE and order 
At, Ax, and Ay in TPHASE. These terms are consequences of calculating the kinetic 
energy from Eq. (30) and from the particular choices made in the finite-difference 
approximations of the mass and momentum equations in each phase. Furthermore, 
these terms do not model any term of the kinetic energy equation. In fact, if one would 
write directly a finite-difference approximation to Eq. (28) in a consistent manner with 
the HELP approximations of Eqs. (l)-(4), the result would be Eqs. (31)-(33) without 
the braced terms. Thus, the kinetic energy finite-difference solutions within HELP 
do not share the corresponding property possessed by the exact solution of the partial 
differential equations: that is, the function e, Eq. (30), derived from the finite-difference 
solutions of the mass and momentum equations does not satisfy the finite-difference 
approximation of Eq. (28). Although the two approximations are the same in the 
theoretical limit as the mesh approaches zero, in practice the inclusion of terms of the 
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order of the truncation error alters the accuracy of the calculation and the computed 
value. 

By casing the above concepts into the framework of averaged quantities and fluc- 
tuations from their averages, an insight can be achieved into the nature of the trunca- 
tion error terms. Consider an averaging procedure such that the average of the sum is 
the sum of the averages, the average of the average is the average, and the average of a 
fluctuation is zero. The exact velocity can be written as the sum of the averaged 
velocity (doubled barred quantity) plus its fluctuation (primed quantity). Component- 
wise, we have 

u=E+u’ and u = v’ + u’. 

The associated specific kinetic energy is 

0.5(u2 + v”) = O.5@2 + 5”) + 0.5(u’2 + d2) + (iiu’+ Ed). (37) 

Using the properties of the averaging procedure, we can write the average of Eq. (37) 
as 

~~ 
0.5(u2 + u”) - 0.5(E2 + a2) = (0.524’2 + tf2). 

The difference between the averaged exact specific kinetic energy and the specific 
kinetic energy of the averaged velocities is the averaged specific kinetic energy of the 
fluctuations which can be called the subgrid-scale specific kinetic energy. If we take 
the averaged values as the computed cell-centered values at the end of a single time 
step, then the first term on the left-hand side of Eq. (38) can be associated with the 
specific kinetic energy computed via the finite-difference approximation of Eq. (28) 
to a given order of accuracy and the second term can be associated with the specific 
kinetic energy computed via the cell-centered values of the mass and momentum. 
Consider, for example, the TPHASE approximation to the specific kinetic energy. If 
we multiply Eq. (33) by dt and manipulate the result using the above associations, we 
have 

0.5(ii2 + 5”) = 0.5(u2 + v2) - $I& {truncation error terms}. 

Comparing Eq. (38) with Eq. (39), we obtain 

0.5(# + vi2) = p”+’ ” (truncation error terms). 

From Eqs. (40) and (39), we see that the original formulation of HELP excludes the 
subgrid-scale kinetic energy. Accordingly, the direct calculation of the kinetic energy 
from Eq. (28) includes it. 

The effect of these truncation error terms is not confined to the kinetic energy 
calculation but is directly translated to the internal energy calculation via Eq. (5). The 
accuracy of the internal energy calculation is of prime importance, since the pressure, 
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temperature, and strength properties of the material directly depend on the internal 
energy and not on either the total or kinetic energies. The dominant errors of the 
internal energy approximations in SPHASE can be seen by subtracting Eq. (34) 
from Eq. (15), in HPHASE by subtracting Eq. (35) from Eq. (20), and in TPHASE by 
subtracting Eq. (36) from Eq. (26). The results are for SPHASE, 

At 8ypZ) =-- 
2 1 

~+f(++sgj2+~(++3$j2] 

+ OW) + O(Ax2) + O(dy2), 

for HPHASE 

for TPHASE 

(41) 

(42) 

At @(PI) -- ---2+-(p~~j-2+@?~j 
2 I at2 

+p[(17~‘a~j2+(~~+j;~)2]l 

+ O(dt2) + O(dx2) + O(dy2), (43) 

where we have assumed dx = dy in order to simplify the TPHASE O(At) term. The 
accuracy of the internal energy calculation depends primarily on the magnitude of the 
first-order terms. The larger these terms are, the less accurate is the calculation. The 
structures of the first-order terms in SPHASE and HPHASE are similar: a second time 
derivative of (pZ) plus positive terms which are a consequence of the truncation error 
terms in the kinetic energy calculation. These positive terms could be excluded from 
the kinetic energy calculation, and hence the internal energy calculation, without 
changing the order of the truncation error of the HELP algorithm. When the second 
time derivative of ($) is nonnegative, the SPHASE and HPHASE internal energy 
values are computed with less accuracy than would occur if these truncation error 
terms were excluded. A typical time history of the quantity (pl) for a conical-shaped 
charge simulation (see Section IV) is given in Fig. 2. The curvature of this graph is 
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TIME (ps) AFTER DETONATION 

FIG. 2. Typical time history profile of the internal energy per volume in a conical-shaped charge 
calculation. 

nonnegative except for a short interval corresponding to the stagnation region within 
a shaped charge. Thus, at least for significant portions of a shaped charge simulation, 
the internal energy calculation in SPHASE and HPHASE is less accurate because of 
the inclusion of the truncation error terms from the kinetic energy calculation. 
Furthermore, even if the curvature of (~1) with respect to time was negative, the 
accuracy of the internal energy would be less, provided the terms associated with the 
truncation error terms from the kinetic energy calculation were much larger than the 
magnitude of the curvature of (~1). 

In the TPHASE calculation, each of the three first-order terms in Eq. (43) should be 
analyzed to ascertain the effects of the truncation error terms from the kinetic energy 
calculation (the squared terms in Eq. (43)) on the internal energy calculation. In 
shaped charge simulations, the O(dy) term dominates the O(dx) and 0(~It) terms, 
since the velocity and direction of the rate of change is primarily in they direction and 
since a fairly coarse spatial computing mesh must be used (O(dy) N 1O-2 versus 
O(dt) rv 1O-s). Hence, we consider only the O(dy) term, which we rewrite as: 

ai a(pi) _ ~ + 5 %J + Pa [(?c)’ + (gy’] 
ay ay (44) 

Typical spatial profiles in shaped charge calculations of the quantities u and (pl) 
along the axis of symmetry are given in Fig. 3. Since v is always positive and &lay, 
a(pZ) and a2(pl)/ay2 are nonnegative throughout most of their variation, the sum 
of the first two terms is generally nonnegative. Consequently, since the third and fourth 
terms are always positive, the accuracy of the internal energy calculation is decreased. 
Thus, as was seen in the SPHASE and HPHASE approximations, the internal energy 
calculation for shaped charge calculations would generally be more accurate, if the 
truncation error terms from the kinetic energy calculation were excluded. 
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FIG. 3. Typical spatial profiles of the axial velocity and internal energy per volume in a conical- 
shaped charge calculation. 

Another example of a flow in which the truncation error terms from the kinetic 
energy calculation would severely affect the internal energy calculation is in the 
expansion of perfect gas in a uniform pressure field. For a perfect gas, we have the 
relation pl = P(y - 1)-l where the constant y is the ratio of specific heats. Conse- 
quently, in a uniform pressure field, the quantities a2(pr)/at2, a(pI)/ax, and a(pl)/ay 
would be zero in Eqs. (41)-(43). If the truncation error terms from the kinetic energy 
calculation were excluded, the entire O(dt) term in SPHASE would be zero as well as 
the entire O(dx) and O(dy) terms in TPHASE. Thus, the internal energy approxima- 
tions in SPHASE would be O(dt2) and TPHASE O(Ax2) and O(dy2). Consequently, 
the approximations achieve a higher order of accuracy when the extraneous terms are 
excluded. 

In other applications, the order of magnitude and/or the algebraic signs of the first- 
order terms in Eqs. (41)-(43) must be analyzed in order to determine the effects of 
truncation error terms from the kinetic energy calculation on the accuracy of the 
internal energy calculation. In regions of large gradients, the magnitude of these 
truncation error terms can be large because of their quadratic dependence on the 
first spatial derivatives. Since limitations on running time and machine storage 
necessitate fairly coarse computing meshes for two-dimensional simulations, the 
truncation errors related to the finite size of the mesh cell are more likely to be impor- 
tant than those related to the time step. Thus, the O(dx) and O(dy) terms in Eq. (43) 
may dominate the truncation error. We shall see that this is the case in shaped charge 
calculations. 

The inclusion of the truncation error terms in the kinetic energy calculation alters 
not only the computed values of the kinetic energy of a cell at each cycle but also the 
values of the internal energy. The coefficients of the dt terms in Eqs. (31) and (32) are 
positive and increase the kinetic energy. For equal spatial meshes (dx = dy), the 
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entire first-order term in the TPHASE calculation is negative for Courant numbers 
less than a half and decreases the kinetic energy. The effects of the truncation error 
terms on the internal energy is reversed because of Eq. (5). The SPHASE and HPHASE 
terms decrease the internal energy and the TPHASE increases it. Thus, these terms 
can be interpreted as a transfer mechanism which is not modeled by the governing 
equations and which converts internal energy into kinetic energy and kinetic energy 
into internal energy. Consider, for example, the one-dimensional first-order energy 
approximation in TPHASE for motion in the x-direction. The only first-order term 
that the internal energy calculation includes is the positive term: 

Expanding expression (45) in a Taylor series about the cell center and the nth time 
level, we obtain 

(A - h’gy2 (46) 

to the lowest order, where X = O.Spudx and h’ = +0.5pu2dt. If (h - X’) were the 
coefficient of viscosity, then expression (46) would be identical to the viscosity term 
in the one-dimensional internal energy equation for a viscous fluid. Thus, the energy 
transfer mechanism in this case could be defined as an explicit artificial viscosity term, 
since it is explicitly included in the difference equation much like the implementation 
of the von Neumann and Richtmyer artificial dissipation scheme. Evans and Harlow3 
identified the term corresponding to h(a~/ax)~ in their one-dimensional analysis of the 
original PIC code. The term h’(au/a~)~ is not included in their analysis, since they did 
not include the effect of time differencing. From expression (46), we see that the time 
discretization decreases the amount of kinetic energy converted to internal energy in 
TPHASE. This explicit type of artificial viscosity is confined only to the TPHASE 
energy calculation and is, in addition to the implicit artificial viscosity [6] (that type of 
artificial viscosity deduced from the neglected truncation error terms within an algo- 
rithm), already inherent in a first-order algorithm. 

We have shown that the terms of the order of the truncation error which are in- 
cluded in the kinetic energy calculation decrease the accuracy of the internal energy 
calculation under certain circumstances. To determine the effects of omitting these 
terms in such a calculation, the HELP code was modified to allow a kinetic energy 
calculation which did not include the first-order terms in Eqs. (31~(33). Consequently, 
the kinetic energy was not computed by the updated mass and momentum values but 
was considered a separate dependent variable. This kinetic energy for both pure and 
mixed cells was updated according to a direct finite differencing of Eq. (28) in a manner 
consistent with the other approximations and was stored in an array. This modified 
version required slightly less computing time than the original version, since all the 
quantities needed to compute a new kinetic energy value are already available from 
the mass and momentum calculations and future references to the kinetic energy are 
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simply retrievals. A natural alternative to the above approach is the calculation of the 
internal energy by a direct approximation of its partial differential Eq. (29). However, 
a stated purpose [l] for the current*total energy version of HELP is the avoidance of 
free-surface pressure and velocity problems rising from a direct internal energy 
calculation. The desire to avoid past difficulties within HELP compelled us away from 
a direct internal energy formulation and to the retention of the total energy formula- 
tion with a modified kinetic energy calculation. This modified code, while still rigo- 
rously conserving total energy, will avoid the algorithmic interchanging of kinetic and 
internal energies which are not modeled by the partial differential equations. The 
results of this modified formulation are compared to those of the original version for 
typical HELP applications at the Ballistics Research Laboratory in the next section. 

IV. EXAMPLES 

The HELP code is used at the Ballistics Research Laboratory to simulate the 
detonation and jet formation of a shaped charge, an armor piercing warhead. We will 
consider an unconfined conical-shaped charge (see Fig. 4a). The actual warhead is 
obtained by rotating Fig. 4a about the axis of symmetry. The explosive is detonated 
and the detonation wave collapses the conical liner toward the axis of symmetry with 
a varying velocity. Sixteen microseconds after detonation, the liner consists of three 
parts (Fig. 4b): the uncollapsed liner, the low velocity large mass slug, and the high 
velocity small mass jet. By performing a Galilean transformation at the point where 

~COMPOSIlION B EXPLOSIVE 

UNCOLLAPSEO 
LINER STAGNATION 

POINT 

+I 

JET 
SLUG 

(b) 

FIG. 4. (a) Initial conical-shaped charge configuration. (b) Copper configuration at 16 ~ls for 
conical-shaped charge. 
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an original ring of liner impinges on the axis of symmetry, a stagnation point in the 
flow can be shown to exist. This stagnation point divides the collapsed liner into the 
slug and jet. It is the jet which pierces the armor and is of prime concern to the shaped 
charge designer. By assuming that the liner can be modeled as an incompressible 
inviscid fluid under typical loading conditions, several researchers [7-91 have developed 
one-dimensional analytical or simple numerical models to determine the velocity 
field. However, when two-dimensional axisymmetric geometry, compressibility, 
strength, and thermodynamic effects are included, a full numerical simulation is 
necessary. 

Since the preceding study was based on a truncation error analysis, a mesh refine- 
ment study is appropriate to the investigation of the effects of the truncation error 
terms on the accuracy of the computed specific internal energies. Because of the 
complexity of a full shaped charge simulation, a related model problem [7] is simulated 
in the mesh refinement study. An observer stationed at the stagnation point in Fig. 4b 
would find the uncollapsed liner moving toward him and separting into two parts (the 
slug and the jet). Consequently, a 2-cm-wide copper wedge traveling at 2 x lo5 cm/s 
was simulated as it impinged on a perfectly reflective wall at 60” of obliquity. The 
wedge collapse was modeled with slab symmetry and the identical material constants 
used in a shaped charge calculation. The Tillotson equation of state [lo] for copper 
was used. The coarse computational mesh was 30 x 100 cells (dx = dy = 0.1 cm) 
and the fine mesh was 60 x 200 cells (dx = fly = 0.05 cm). Both the original and 
modified version of the HELP code were run on a CDC 7600. 

The results at 10,~s after the wedge first impacts the wall are shown in Figs. 5-7. 
Besides the specific internal energy, two other important quantities, the relative axial 
velocity (relative to the end of the slug portion) and density, are compared along the 
wall in the slug, stagnation, and jet regions. Qualitatively, the entire relative axial 
velocity and compression curves and the slug portion of the specific internal energy 
curve are similar among the mesh variations and version changes. However, the 
qualitative behavior of the jet’s specific internal energy markedly differs between the 
two versions for either mesh. This is due to the increased gradients within the jet 
portion which drastically increase the magnitude of the truncation error terms from 
the kinetic energy calculation, and thus, the truncation error. Quantitative comparisons 
were made at three positions in Figs. 5-7: the slug end, the stagnation point (denoted 
by J), and the jet end. While the total deviation from the largest computed value 
at the three stations among the relative axial velocity and compression curves 
was less than 7 % (except for 9.9 % in the compression at the jet’s end), the 
total deviation of the specific internal energy curve was 82.1, 26.4, and 63 % at 
the jet, stagnation, and slug, respectively. The tremendous increase in the total 
deviation of the specific internal energy curve is due to the first-order terms included 
in the calculation of the kinetic energy. In fact, the deviation of the coarse mesh 
specific internal energy results from the fine mesh results, decreased by over 62 % 
from the original version to the modified version, Consequently, one obtains much 
less variation in the specific internal energy values as one converges to the solution 
through a mesh refinement with the modified version. Figure 7 suggests that 
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CURVE MESH SIZE VERSION CURVE MESH SIZE VERSION 
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SLUG STAGNATION JET 
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FIG. 5. Spatial profiles of the relative axial velocity at 10 @ along the wall for a copper wedge 
impact calculation. 
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FIG. 6. Spatial profiles of the compression at 10 ps along the wall for a copper wedge impact 
calculation. 

the specific internal energy values which are computed by the modified version and 
with the coarse mesh provide a better approximation to the exact values than 
those values computed by the original version with the fine mesh. This trend is 
also present in the compression curve. The results of Fig. 7 also show that for 
this type of problem, the truncation error terms in the kinetic energy calculation 
associated with TPHASE (Courant number of 0.4 is used) dominate those 
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CURVE MESH SIZE VERSION 
. . . . . . . 9 0.10 ORIGINAL 
---__ 0.05 
-_- 0.10 MODIFIED . : 
- 0.05 : 

REGIONS 

FIG. 7. Spatial profiles of the specific internal energies at 10 ps along the wall for a copper wedge 
impact calculation. 

associated with SPHASE and HPHASE and cause the specific internal energy to be 
increased. 

In order to further compare the original and modified versions of the HELP code, 
a conical-shaped charge with a copper liner and Composition B explosive (Fig. 4a,) 
was modeled in cylindrical coordinates and with identical material constants, initial 
conditions, code options, and grid structure. The computational mesh was 60 cells 
(dr = 0.052 cm) by 1,87 cells (dz = 0.052 cm). The initial state was quiescent: all 
properties zero except the standard values of the densities. The Jones-Wilkins-Lee 
equation of state [l l] for the explosive and the Tillotson equation of state [lo] for the 
copper were used. The calculations were performed on a CDC 7600. 

In the original formulation, the specific internal energy of each cell in the jet is well 
above the value corresponding to incipient vaporization (13.8 x lo9 erg/g) at 16 ps. 
Thus, the jet is characterized as a liquid-vapor jet. However, with the modified 
formulation, the specific internal energy of the same cells is generally below that for 
melt (5.3 x lo9 erg/g) and a solid jet with several melted sections is predicted. See 
Fig. 8. The specific internal energy value corresponding to the melting point is a 
material property input value and that value corresponding to the incipient vaporiza- 
tion point is contained within the Tillotson equation of state. Although no actual 
temperature has been taken for this shaped charge, other experimental evidence [12] 
supports the conclusion that the jet is a solid. Thus, qualitative thermal agreement is 
achieved with the modified formulation. This comparison of the jet’s internal energies 
shows that in the original formulation, the truncation error terms in the kinetic 
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FIG. 8. Cell values of the specific internal energy (erg/g) of the copper jet computed by the 
modified formulation. 

energy calculation associated with TPHASE (Courant number is 0.4) dominate those 
associated SPHASE and HPHASE. In fact, throughout the flow field, the original 
formulation gave higher values of the internal energy than the modified formulation. 
A comparison of the magnitude of the computed specific internal energies along the 
axis of symmetry between the two formulations is given in Fig. 9. The modified code 
predicts up to an 88 % decrease in the specific internal energy of the original code. 
Such major changes in the internal energy will drastically affect the material properties 
of the jet, such as its strength, ductility, and cohesion. Two other quantities important 
to the warhead designers are the density and axial velocity. Figures 10 and 11 show 
comparisons of the compression and axial velocity of the jet along the axis of sym- 
metry. The jet density of the modified code is approximately 10 % higher than the 
original. Near the stagnation region, the modified formulation gives an improved 
result: a compression (p > pO) of the copper. The density discontinuity near the jet tip 
which may not be physical is of smaller magnitude in the modified version. The axia1 
velocities (Fig. 11) are virtually identical except near the jet tip where the physical 
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FIG. 9. Comparison of the jet’s specific internal energy along the axis of symmetry at 16 M. 
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FIG. 10. Comparison of the jet’s compression along the axis of symmetry at 16 M. 
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FIG. 11. Comparison of the jet’s axial velocity along the axis of symmetry at 16 ps. 

inverse velocity gradients are present but have small magnitudes. The larger axial 
velocity values of the original version caused the slightly longer jet (approximately two 
computational cells). The relative jet tip velocity (jet tip velocity minus slug tail 
velocity) of 6.02 x lo5 cm/s is 7.9 “/, lower than that indicated by experimental flash 
radiographs. The discrepancies between the density and axial velocities would be 
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much greater if the original version did not have an artificial cutoff value (13.8 x 
lo9 erg/g) for the specific internal energy in the equation of state for the liner material. 
Since the cell values of the jet’s specific internal energy are well above the cutoff value 
in the original formulation, the pressure, velocity, total energy, and mass do not 
include the effects of the computed high internal energies. 

V. SUMMARY 

We have shown by a truncation error analysis that terms of the order of the trunca- 
tion error in the HELP algorithm are included in the kinetic energy calculation. In the 
original HELP code, the updated values of kinetic energy were computed as conse- 
quences of the updated mass and momentum values. This value is shown to deviate 
from that computed directly by a first-order approximation of the kinetic energy 
equation by first-order terms which depend quadratically on the spatial derivatives of 
the velocity, pressure, and elements of the deviator stress tensor. These truncation 
error terms can severely alter the related internal energy calculation. The effect of these 
truncation error terms from the kinetic energy calculation on the accuracy of the 
internal energy is problem dependent and the criteria for such a determination is given 
in terms of the explicitly calculated truncation error terms for the specific internal 
energy. A method was suggested to avoid these terms within the confines of the basic 
HELP algorithm. Although in certain computations these truncation error terms from 
the kinetic energy calculation may remain negligible, in others they can be significant 
and produce spurious results. A case in point has been cited and illustrated by applica- 
tions to problems in warhead mechanics. A mesh refinement study for a copper 
wedge impacting a perfectly reflective wall was made. The results show tremendous 
deviations in the internal energy values as the mesh size decreases, while other quanti- 
ties show relatively little deviations. In the modified formulation, significantly smaller 
deviations in the internal energy values and, consequently, a more consistent devia- 
tion with the other quantities are observed. Drastic improvements in the internal 
energy values are also seen in conical-shaped charge calculations. In these simulations, 
the internal energies which are compatible with experimental results are obtained for 
the first time with the modified formulation. Furthermore, the upper bound on the 
specific internal energy in the Tillotson equation of state for the liner material has been 
removed in the modified formulation. Now the specific internal energy value used in 
the pressure calculation is always the value calculated by the algorithm. 

In the TPHASE section of the original HELP algorithm the truncation error terms 
from the kinetic energy calculation are identified with an explicit artificial viscosity in 
the internal energy calculation. Consequently, the modified formulation may require 
implementation of the artificial viscosity option available in cases where the original 
formulation did not. 

A noteworthy feature of the analysis and modification is that it is directly relevant 
to codes other than HELP. In fact, any code with a HELP-type algorithm can be 
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erroneously affected by truncation error terms in the kinetic energy calculation. In 
particular, the same unphysical internal energies in the jet are computed by the HULL 
code. 
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